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Four different models are used to predict whether a compound will bind to 2C9 with a Ki value of less than
10 µM. A training set of 276 compounds and a diverse validation set of 50 compounds were used to build
and assess each model. The modeling methods are chosen to exploit the differences in how training sets are
used to develop the predictive models. Two of the four methods develop partitioning trees based on global
descriptions of structure using nine descriptors. A third method uses the same descriptors to develop local
descriptions that relate activity to structures with similar descriptor characteristics. The fourth method uses
a graph-theoretic approach to predict activity based on molecular structure. When all of these methods
agree, the predictive accuracy is 94%. An external validation set of 11 compounds gives a predictive accuracy
of 91% when all methods agree.

Introduction

Identifying drug-drug interaction potential early in drug
discovery and development is important because drug-drug
interactions can cause life threatening changes in drug levels.
Early discovery of potential drug-drug interactions for a
compound expedites the decision to eliminate that compound
from consideration, thus lowering the cost of drug discovery.
Virtual drug screening allows for the prediction of binding
affinity prior to synthesis, and if prediction can be trusted, it
can guide the drug discovery process. To date no single
computational method has proven to be outstanding in this
regard, and virtual screening still has not replaced in vitro
screening methods or been routinely used in drug design. Drug
interaction sites related to metabolism include UDP-glucurono-
syltransferase, sulfotransferases, aldehyde oxidase, and the
cytochrome P450 enzymes. Because a number of drug-drug
interactions are observed for the cytochromes P450, affinity
models have been developed for these enzymes. In particular,
models have been developed for the three major drug metabo-
lizing enzymes 2C9, 2D6, and 3A4.1–3 These metabolic enzymes
have broad overlapping substrate specificity, most often coupled
with relatively low affinity. Almost all substrates are also
competitive inhibitors of the enzyme that metabolizes them,
however, not all inhibitors are substrates. The general rule for
drug-drug interactions is that compounds that have Ki values,
uncorrected for protein binding, greater than 10 µM are unlikely
to exhibit important clinical drug-drug interactions. Since most
compounds have Ki values higher than 10 µM, including

estimates of drug affinity in the early stages of drug design
should reduce drug-drug interactions, while not significantly
limiting the library of lead compounds for a given therapeutic
target.

Many methods have been used to predict the affinity of a
substrate for a given drug metabolizing enzyme. The most
accurate of these models are three-dimensional (3D) models,
which overlay a number of known inhibitors of a given enzyme.
We and others have developed a number of these models.4–7

An added advantage of 3D quantitative structure–activity
relationship (QSARa) models is that they provide an under-
standing of the molecular features important in binding. These
methods have very high resolution when applied to related
compounds, and the differences in affinity that can be predicted
are much smaller than when docking to protein crystal structures
is used. This high resolution is achieved by the cancelation of
errors associated with the overlapping structures, leading to
prediction of binding energy differences of less than 1 kcal/
mol. While free energy perturbation methods can approach this
type of resolution in well-defined crystal structures, the cost in
computational resources is very high.8 Other methods, such as
that of Aqvist, have been applied to the cytochrome P450
enzymes9 with good success and are much faster. Obviously,
docking experiments and molecular dynamics approaches
provide much more information about how a substrate binds
and can provide valuable information on how to redesign a
chemical to have lower affinity. Thus, each of these methods
provides unique information, while the ligand-based models
provide the highest throughput.

While 3D methods have specific advantages over 2D models,
they suffer from the potential for multiple binding modes and
in general are not easily adapted to very high-throughput.
Methods based on crystal structures assume that the protein
structure remains the same for each substrate. This is not true
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for 2C9, which appears to undergo major conformation changes
that differ based on the substrate used.10,11 In contrast, 2D
models do not assume the substrate binds in a specific
orientation, are high-throughput, and are not sensitive to protein
conformational change. The major problems with 2D models
are their inability to give information about protein structure
and their dependence on the training set that can lead to
overfitting, making a model seem statistically better than it
actually is.

The utility of using multiple predictive methods has been
demonstrated by De Groot and co-workers as a way to overcome
the limitations of the individual methods.3 They used a
combination of two neural networks and one Bayesian model
to increase the predictive capacity for 2D6 inhibition. When
two models were combined, an impressive increase in correct
classification resulted.

While all enzymes involved in the metabolism of drugs have
the potential for drug-drug interactions, three P450 enzymes,
2C9, 2D6, and 3A4, account for the majority of drug metabolism
and have been the major focus in understanding drug metabolism
at the metabolic level.12 Cytochrome P450 2C9 (2C9) is one of
the major P450 enzymes responsible for the hepatic clearance
of around 15% of clinically relevant drugs.13 Given that 2C9
plays such an important role in drug metabolism and binds a
number of compounds with high affinity, it is not surprising
that drug-drug interactions occur for compounds metabolized
by this enzyme.12 We describe herein the use of four different
models to predict whether a compound will bind to 2C9 with a
Ki value of less than 10 µM. The modeling methods were chosen
to maximize the differences in how training sets are used to
develop the predictive models. Two of the four methods (line
walking recursive partitioning (LWRP) and normal equation
recursive partitioning (NERP)) develop partitioning trees based
on global descriptions of structure using nine descriptors. A third
method (we term the gravity method) uses the same descriptors
to develop local descriptions that relate activity to structures
with similar descriptor characteristics. The fourth method
(SUBDUE) uses a graph-theoretic approach to predict activity
based on molecular structure. When all of these methods agree,
the predictive accuracy is 94%.

Methods

Inhibition constants for compounds not reported in the literature
were determined as follows: Incubations were performed with 0.5
pmol 2C9/100 µL incubation for 10 min using diclofenac as a
substrate probe. Diclofenac concentrations used were 1, 2, and 5
µM, which encompassed a range of approximately 0.5 times Km
to 2 times Km. Inhibitors were incubated at five concentrations.
The amount of 4′-OH diclofenac was assessed by LC/MS analysis
to determine the rate of 4′-OH diclofenac formation at each
combination of substrate and inhibitor cocentration, and Ki values
were determined by nonlinear regression to Michaelis–Menten
equation for competitive inhibition. 2C9 supersomes were obtained
from BD Gentest.

Description of the Four Computational Methods for
Developing Models. The LWRP, NERP, and gravity methods all
rely on treating compounds as points in an m-dimensional “descrip-
tor space”, where m is the number of descriptors. For each
compound ci in the training set, we have a corresponding point ri

and its corresponding experimental value g(ri), treated as a binary
value (in this case, -1 if pKi < 5.0 and +1 if pKi g 5.0.) When a
prediction is desired, the compound under investigation corresponds
to another point y in the descriptor space. The compound’s behavior
is predicted based on where y resides relative to the points ri

corresponding to the compounds in the training set.
In contrast to the three descriptor-based methods, the graph-

theoretic structure method treats compounds as graphs whose

vertices and edges represent atoms, bonds, and their properties. The
training set is analyzed as a collection of graphs; similarities among
graphs in either subset are catalogued and then form the basis for
prediction.

Line Walking Recursive Partitioning (LWRP). This method
is described in detail in1 and we give a synopsis here. Recursive
partitioning as described in refs 1 and 14 consists of finding a
hyperplane that partitions the space containing the training set into
two pieces. Then the process continues by splitting each of the
two pieces by a hyperplane and so on, until the training set has
been partitioned into subsets where all of the points in a subset
correspond to compounds whose experimental values p(ri) are either
all above or all below a predetermined threshold value. The goal
is to make the final number of subsets small. The “line walking”
portion of the algorithm described below was devised as a means
of producing a hyperplane that splits a set of points into two more
homogeneous sets with regard to the threshold value.

Recalling that there are m descriptors being used, the initializing
step in choosing a splitting plane for a set S is to choose a set of
vectors R ) {r1, r2, . . ., rm} from S at random.

Given an m-element subset R ) {r1, r2, . . ., rm} of S, the entire
training set, a single iteration of the line-walking algorithm, consists
of the following steps: Compute the vector p such that p × ri ) 1
for all ri in R; choose a value rk at random from R′ and delete it
from R; form the matrix M whose rows are the remaining vectors
in R; and find a solution distinct from p to the linear system Mq )
1. Ideally, this system will have a 1D solution space, but this is
not required. In the rare situation when the system is inconsistent,
we solve the normal equation: MTMq ) MT1.

Defining L(t) ) t q + (1 - t)p, determine for each rs in S the
value ts such that L(ts) × rs ) 1. L is the “line” mentioned in the
name of the algorithm. If no such value ts exists, then the
corresponding rs is disregarded for steps 5 and 6 of the algorithm.

f(L(ts)) is maximized, where f is some objective function that
measures how well L(ts) splits the set R, and rk is replaced with rs

in R. The new vector p is equal to L(ts), so the next iteration begins
at step 2.

There are several possibilities for conditions to halt the algorithm.
The halting criterion chosen early in this research was if the
maximized value of f remains unchanged for a predetermined
number of consecutive iterations. Later, it was decided to permute
the vectors in R and adopt each in succession as rk in step 2 if the
maximum value of f remained unchanged. The algorithm halts if
all of the vectors in R are exhausted in this manner. This condition
results in locating a local maximum for f in the sense that no rs in
R can be substituted, resulting in raising the value of f(L(ts)). The
final vector p yields the decision plane, P ) {x ∈ Rn : p × x ) 1}
The set S is then dissected into two pieces, S+ ) {r ∈ S : p × r
g 1} and S- ) {r ∈ S : p × r < 1} We then repeat the algorithm
on each piece, recursively, ultimately producing a “prediction tree”.

Because the line-walking algorithm incorporates random deci-
sions, a variety of decision trees can be produced from the same
set S. This enables us to make consensus predictions based upon
the outcomes of a simple majority of the trees.

Normal Equation Recursive Partitioning (NERP). This algo-
rithm is like LWRP in that it also produces a recursive partitioning
of chemical space by means of decision planes. Here, given a set
of points, S ) {s1, s2, . . ., sk}, we find the hyperplane P that
partitions S by the following steps: compute the vector v ) (Vj1, Vj2,
..., Vjn), where Vi is the mean of the values of the ith descriptor;
form the k × n matrix N, whose ith row is si - v; form the k-vector
g, whose ith entry is 1 if the ith compound in the test set’s
experimental value is at or above the threshold and -1 otherwise;
find a solution p to the normal equation NTNp ) NTg.

Because this algorithm is deterministic, every NERP tree built
from the set S is identical. To build a forest of different NERP
trees upon which to base a consensus prediction, we use randomly
generated subsets R of S to construct our trees.

Gravity. While LWRP and NERP partition the entire descriptor
space into discrete regions of similar behavior, the gravity method
is a “nearest-neighbor” type of algorithm that produces a real-valued
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continuous prediction. The “gravity interpolation” algorithm begins
with a collection of distinct points, called the training set, in some
vector space, and a value p(x) assigned to each point x. The
predicted value p(y) of any point y in the space is computed as a
weighted average, p(y) ) ∑iwip(xi)/∑iwi, where the weights are
given by the formula wi ) 1/|y - xi|k, k> 0; the |y - xi| term in the
denominator denotes the Euclidean distance between xi and y. When
y is near one of the points xi in the training set, then the weight
assigned to this point overwhelms the other weights and so the
prediction p(y) is very close to p(xi). Adopting the convention that
if y ) xi, then p(y) ) p(xi) makes this process a continuous function
over the vector space.

The parameter k can be modified to adjust the smoothness of
the gradients among the points in the training set. As k is made
very large, the prediction p(y) approaches p(xnearest), the value at
the nearest point in the training set to y. When k ) 2, then the
weights are analogous to the “gravitational pull” of unit masses at
the training points, hence, the name of the algorithm. Conversely,
as k is made very small, the weights become close to 1 and so the
prediction p(y) approaches the mean of the p(xi) values.

Substructure Discovery Using Examples (SUBDUE). The
SUBDUE method 15,16 differs from the previous methods in two
fundamental ways. First, the data is represented as a graph, and
the predictor for a class is represented as a set of subgraphs, such
that if any of these subgraphs is present in a new example, then
the example is predicted to belong to the class. Second, the top-
level learning algorithm uses a set-covering approach, in contrast
to a partitioning approach, that learns a predictor for a subset of
the examples, removes this covered set from consideration, and
then iterates until all of the examples are covered by at least one
predictor.

In the current task of predicting the inhibitory behavior of a
compound (i.e., whether its pKi value is above or below 5.0), we
represent each compound as a labeled graph, an example of which
is depicted in Figure 1. Each atom is represented as a vertex-labeled
“atom”. An edge-labeled “element” connects the atom vertex to a
vertex whose label is the atom’s element. An edge labeled “atom-
type” connects the atom vertex to a vertex whose label is the atom’s
type. Each bond is represented by a vertex labeled “bond”, with
two “bond”-labeled edges connecting it to the atoms involved in
the bond. A third edge labeled “bond-type” connects the bond vertex
to a vertex whose label is the bond’s type. Alternatively, we could
have used a representation in which each atom is a single vertex
whose label is the atom type, and each bond is an edge labeled
with the bond type and connecting the two involved atoms.
However, this representation would force the predictors (subgraphs)
to be based on specific atom types and bond types rather than having
the ability to predict based on the mere presence of certain numbers
of atoms and bonds, only some of which may need to be constrained
to a specific element or type.

Given a set of positive example graphs Gp (i.e., compounds for
which pKi g 5.0) and a set of negative example graphs Gn (i.e.,
compounds for which pKi < 5.0), the SUBDUE method proceeds
as follows: (1) H ) {}; (2) repeat, (a) find a subgraph g maximizing
V ) (tp + tn)/(Gp + Gn), where tp is the number of graphs in Gp

containing g and tn is the number of graphs in Gn not containing
g, (b) H ) H U {g}, and (c) Gp ) Gp - {graphs in Gp containing
g}, until Gp ) {}; (3) return H.

The search for the error-minimizing subgraph in step 2a is
conducted using a heuristic search that finds a local minimum in
the error (1 - V). Candidate subgraphs are built starting from single
vertices and expanded one edge at a time during the search based
on edges existing in the data; therefore, only graph isomorphism
tests (and not NP-complete subgraph isomorphism tests) are needed
to determine the graphs in Gp and Gn containing g. The graph
isomorphism test is constrained to run in time polynomial in the
size of the graph. The returned hypothesis H is a disjunction of
subgraphs, such that H predicts a graph is a member of the positive
class if that graph contains at least one of the subgraphs in H.
Because the subgraphs added to H in later iterations are likely to
be overly specific (e.g., matching only one positive example), a
stopping criterion based on tp or a limit on the size of H may be
employed.

For SUBDUE we used a stopping criterion of |H| e 5, which
was determined based on minimizing the error of a 10-fold cross-
validation on the training set. We then ran SUDBUE on the entire
training set to produce the predictor H, which was then used to
classify the examples in the validation set. We used version 5.2 of
SUBDUE, written in C, and available at www.subdue.org.

For the LWRP, NERP, and Gravity methods, we used nine
descriptors, described in Table 1 [1] and a training set of 276
compounds whose pKi values ranged from 1.9 to 7.6 and a
validation set of 50 compounds, 23 of which had pKi values below
5.0 and 27 of which had pKi values above 5.0. For LWRP, we
made our consensus predictions using 101 trees based on the entire
276 compound training set. For NERP, we also built 101 trees, but
each was based on a randomly generated subset of 125 compounds
from the training set. For the gravity method, we used the parameter
k ) 4. Computations for LWRP, NERP, and gravity were all done
using the 2006.08 version of Molecular Operating Environment
software.

Training and Validation Set Selection. The 326 compound
database with Smiles string structures, training sets, validation sets,
and descriptors for 2C9 inhibitors can be obtained at seeker.wsu.edu
as excel spreadsheets. This database was split into a training set of
276 compounds and a diverse validation set of 50 compounds. The
50 compound validation set was obtained by ranking entries based
on structural fingerprints with the distance being calculated by the
Tanimoto Coefficient similarity matrix. The most structurally
diverse subset was constructed using this metric. Other methods
for selecting a diverse training set were explored with LWRP and
very similar results were obtained (data not shown).

Results

We summarize the performance of the various methods in
Tables 2 and 3.

In Table 2, the value λ is the Matthews coefficient, computed
by the formula

λ)
t+t-- f+f-

√(t++ f+)(t++ f-)(t-+ f+)(t-+ f-)

The Matthews coefficient λ has several useful properties. It
can be shown that -1.0 e λ e 1.0, where a value of 1.0
indicates a perfect predictor and a value of -1.0 indicates a
perfect antipredictor. Finally, if predictions are based solely on
a random assignment, then the expected value of λ is 0.0.

Table 3 lists the breakdown of how well the four methods
predicted the behavior of the 50 compounds in the validation
set. All four methods correctly predicted the behavior of 31 of
the 50 compounds and three of the four methods correctly
predicted the behavior of 11 of the remaining 19 compounds.
Thus, 42 out of 50 compounds were correctly identified by a
majority of the four methods. Of the eight remaining com-

Figure 1. Graph representation example of a compound.
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pounds, four were evenly split among the four methods, two
were incorrectly predicted by three of the methods, and two
were incorrectly predicted by all four methods. In Tables 4 and
5 we show structures, experimental pKi values, and results from
the four methods on each of the eight underperforming
compounds. In these tables, a “+” sign indicates a predicted
pKi value of at least 5.0 and a “-” sign indicates a predicted
pKi value below 5.0.

We note that three of these eight underperforming compounds
(including the two worst performers) have experimental pKi

values within 0.2 units of the threshold value of 5.0.

Discussion

The computational prediction of whether a compound will
bind tightly to a drug metabolizing enzyme can be an important
tool in drug design. If high affinity compounds could be
identified prior to synthesis, efforts could be focused on
compounds less likely to have adverse effects via drug-drug
interactions, decreasing the time required to develop a drug for
a target. Unfortunately, most methods for predicting affinity are
not accurate enough to convince the medicinal chemist that
synthesis and testing are not appropriate. Herein we present four
distinct modeling methods that when combined provide predic-
tions that are as accurate as in vitro testing for predicting if a
compound will have high affinity (<10 µM) for 2C9.

We used a number of common metrics to determine if a
model is accurate at predicting if a validation set of 50

compounds are tight binding inhibitors of 2C9. “Concordance”
denotes the percentage of compounds correctly predicted,
“Specificity” denotes the percentage of weak binding compounds
correctly predicted, “Sensitivity” denotes the percentage of tight
binding compounds correctly predicted, and λ is the Matthews
coefficient described in the methods section.

The LWRP method has been used in the past to predict if
compounds are 2C9, 3A4, and 2D6 inhibitors at any concentra-
tion.1 While this is useful information, the main reason to
understand affinity is to predict if a compound will be a substrate
or inhibitor. To determine if LWRP can predict if a compound
will be a high affinity inhibitor of 2C9 we used a database of
326 compounds for which we have measured Ki values in the
past. We selected 50 compounds from the 326 to act as a
validation set and used the rest to train the LWRP model. As
shown in Table 3, LWRP predicts 44 of the 50 compounds
correctly to give a concordance of 88%. Out of the 27
compounds that bind with a Ki value of 10 µM or lower, LWRP
predict 23 correctly, which corresponds to a sensitivity of 85%.
Out of 23 compounds that bind with a Ki of over 10 µM, 21
are correctly predicted for a specificity of 91%.

NERP is a new method for dividing compounds into inhibitors
and noninhibitors, related to LWRP, but with a significant
savings in computing time; the details of the methods are
presented in the computational methods section. As shown in
Table 3, NERP predicts 45 of the 50 compounds correctly to
give a concordance of 90%. Out of the 27 compounds that bind
with a Ki value of 10 µM or better, NERP predicts 24 correctly,
which corresponds to a sensitivity of 89%. Out of 23 compounds
that bind with a Ki of over 10 µM, 21 are correctly predicted
for a specificity of 91%.

Gravity is a new method for recursive partitioning that makes
decisions based on a tree weighted by compounds that occupy
a similar descriptor space. While LWRP and NERP attempt to
make more global decisions, Gravity is essentially a nearest
neighbor method. As shown in Table 3, Gravity predicts 43 of
the 50 compounds correctly to give a concordance of 86%. Out
of the 27 compounds that bind with a Ki value of 10 µM or
better, Gravity predict 22 correctly, which corresponds to a
sensitivity of 81%. Out of 23 compounds that bind with a Ki of
over 10 µM, 21 are correctly predicted for a specificity of 91%.

SUBDUE is a totally different method, which has been used
in the past for classification in several structural domains,
including mutagenicity of compounds19 and function of meta-
bolic pathways.20 As shown in Table 3, SUBDUE predicts 37
of the 50 compounds correctly to give a concordance of 74%.
Out of the 27 compounds that bind with a Ki value of 10 µM
or better, SUBDUE predicts 21 correctly, which corresponds
to a sensitivity of 77%. Out of 23 compounds that bind with a
Ki of over 10 µM, 16 are correctly predicted for a specificity of
69%.

Table 1. Molecular Descriptors Used in LWRP, NERP, and Gravity Methods

descriptor synopsis

vsa_hyd The approximation to the sum of VDW surface areas of hydrophobic atoms.
vdw_vol The van der Waals volume calculated using a connection table approximation.
apol The sum of the atomic polarizabilities (including implicit hydrogens) with polarizabilities taken from ref 17.
vdw_area The area of van der Waals surface calculated using a connection table approximation.
weinerPol Wiener polarity number: half-the sum of all of the distance matrix entries with a value of 3 as defined in ref 18.
PEOE_VSA_NEG The total negative van der Waals surface area; this is the sum of the Vi

b such that qi is negative.a

Zagreb Zagreb index: the sum of dI
b over all heavy atoms i.c

SlogP The log of the octanol/water partition coefficient (including implicit hydrogens).
bpol The sum of the absolute value of the difference between atomic polarizabilities of all bonded atoms in the molecule

(including implicit hydrogens) with polarizabilities taken from ref 17.
a The variable qi denotes the partial charge on atom i. b The Vi value denotes the accessible van der Waals surface area of atom i calculated from a

connection table approximation. c The di value is defined as the number of heavy atoms to which atom i is bonded.

Table 2. Comparison of Performance among LWRP, NERP, Gravity,
and SUBDUE Predictive Methodsa

LWRP NERP Gravity SUBDUE

t+ 23 24 22 21
t– 21 21 21 16
f+ 2 2 2 7
f– 4 3 5 6
λ 0.762 0.800 0.726 0.475
a The variable t+ denotes the number of “true positives”, that is, those

compounds that were correctly predicted to have pKi g 5.0; t- denotes the
number of “true negatives”; f+ denotes the number of “false positives”,
those compounds incorrectly predicted to have pKi g 5.0; and f- denotes
the number of “false negatives”. The variable λ denotes the Matthews
coefficient.

Table 3. Aggregate Performance among LWRP, NERP, Gravity, and
SUBDUE Predictive Methods

No. of the four methods
producing correct predictions

No. of cmpds
(out of 50)

4 31
3 11
2 4
1 2
0 2
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Interestingly, only two compounds out of the 50 compound
training set are incorrectly predicted by all methods. This
indicates that the methods produce models with different
weaknesses and that combinations of the four models should
have better predictive capacity than any individual model. All
four models agree for 33 out of 50 compounds or 66% of the
time. When the models agree, the prediction is correct 94% of
time. The specificity and sensitivity are 92 and 95%, respec-
tively. The two incorrectly predicted compounds are within 0.15
log units of the cutoff point for being a strong inhibitor (<10
µM), having Ki values of 14 and 8 µM. Given the normal
uncertainty in Ki measurements, these values are not distin-
guishable from each other or the cutoff. Thus, for a large fraction
(66%) of the compounds in the validation set, an extremely high
degree of predictability can be obtained, and the results are
essentially the same as determining the in vitro Ki value. Given
this result if all four models agree that a compound will bind
with a Ki value of less than 10 µM, this compound can
confidently be removed from the set of compounds to be
synthesized.

While using all four models gives very high confidence in
the prediction, it could be argued that not getting a prediction
for 33% of the compounds is too low a coverage for early
predictive methods. We can increase coverage to 92% by scoring
based on 3 out of four methods. Using three out of four of the
models to get a prediction gives a correct prediction frequency
of 91%. Out of the 24 compounds that bind with a Ki value of
10 µM or lower and that a prediction can be made, 21 are
correctly predicted, which corresponds to a sensitivity of 87%.

Out of 22 compounds that bind with a Ki of over 10 µM, 21
are correctly predicted for a specificity of 95%.

After developing the models, we synthesized a new series of
tight binding inhibitors related to benzbromarone analogs we
synthesized earlier,7 but with the benzofuran bicyclic ring system
replaced with a chromanone bicyclic ring system (Figure 2).
Details of the synthesis and characterization of binding will be
presented in a separate manuscript. These compounds provide
an external validation data set of 11 compounds that have no
analogs in the training set. They also provide an example of
compounds that bind so tightly to 2C9 that they would exhibit
drug-drug interactions. All the available 327 molecules were
used to develop new models using each method. When these
models are used, all four of methods, LWRP, NERP, Gravity,
and SUBDUE, predicted that 10 of the 11 compounds had Ki

values below 10 µM. For the remaining compound, all methods
but Gravity predicted that the Ki would be below 10 µM. We
remark that SUBDUE identified all 11 compounds as binders
because all of them contain the substructure (reported as
subgraph “C.2-1-C.2-2-C.2-1-O.3”) shown in Figure 3. None
of the carbon atoms in this substructure are aromatic.

The results indicate that 11 out of 11 compounds would have
high potential for drug-drug interactions by inhibiting 2C9, as
predicted by using the consensus of three out of four models.
If all four methods are required to agree for a prediction, 10 of
11 or a 91% correct prediction frequency is obtained, identical
to the prediction frequency of the diverse validation set. This
is an interesting result given that no chromenone analogs are
in the data set. To see if this prediction accuracy was a result

Table 4. Compounds Correctly Predicted by Exactly Two out of the Four Predictive Methods
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of the structure sharing common features with the tight binding
benzbromarone compounds, we used Gravity to look at the three
nearest neighbors in descriptor space for each of the 11
compounds. Four of the compounds did not have any benzbro-
marone analogs as the three nearest neighbors, while six others
only had one benzbromarone as a nearest neighbor, the
remaining compound had two benzbromarone analogs as nearest

neighbors. Because Gravity was designed to be a nearest
neighbor prediction method, these results indicate that the high
predictive capacity for this external validation set is not just a
result of close similarity of these compounds to the benzbro-
marone analogs in the training set. However, it should be noted
that all these compounds are relatively tight binding inhibitors,
and this external validation set does not test the models ability
to predict diverse poor binders. While 27 compounds in the
validation set of 50 are weak binders, many are related to
structures in the training set.

Conclusions

Four different methods were used to predict if a diverse test
set of 50 molecules and an external validation set of 11 tight
binding inhibitors of 2C9 are likely to cause drug-drug
interactions based on binding affinity. While each individual
method had reasonable predictive accuracy, combining the
models proved to be highly predictive, as was observed using
other predictive methods by O’Brien and de Groot.3 The best
approach in terms of structural coverage and predictive accuracy
appears to be to use the consensus of 3 out of 4 of the models.
Thus, when any three models agree on the drug-drug interaction
potential, the prediction is over 90% accurate. Most of the
outliers are found to be relatively close to the 10 µM cutoff,
indicating that the methods are capturing the relative affinities
of the molecules. Given the high accuracy of the method, at
least with the compounds tested, it appears that decisions on
scaffolds for lead compound synthesis can be made with the

Table 5. Compounds Correctly Predicted by Fewer than Two out of the Four Predictive Methods

Figure 2. Benzbromarone and chromenone analog.

Figure 3. Substructure in common to all 11 chromenone analogs.
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combined models. Of course, if the structures show a large
variation from the training set, the predictive capacity would
be reduced. In this case, the models may have to be retrained
to include representative compounds from this new structural
space.
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